Изображения страниц
PDF
EPUB

enough to make the vein appear continuous. At the vertex of the parabola the spray of pearls is more than an inch in width, and, further on, the drops are still more widely scattered. On sweeping a fiddle-bow across a tuning-fork which executes 512 vibrations in a second, the scattered drops, as if drawn together by their mutual

[blocks in formation]

attractions, instantly close up, and form an apparently continuous liquid arch several feet in height and span (shown in Fig. 144). As long as the proper note is maintained the vein looks like a frozen band, so mo tionless does it appear. On stopping the fork the arch is shaken asunder, and we have the same play of liquid

pearls as before. Every sweep of the bow, however, causes the drops to fall into a common line of march.

A pitch-pipe, or an organ-pipe yielding the note of this tuning-fork, also powerfully controls the vein. The voice does the same. On pitching it to a note of moderate intensity, it causes the wandering drops to gather themselves together. At a distance of twenty yards, the voice is, to all appearance, as powerful in curbing the vein, and causing its drops to close up, as it is when close to the issuing jet.

The effect of "beats" upon the vein is also beautiful and instructive. They may be produced either by organpipes or by tuning-forks. When two forks vibrate, the one 512 times and the other 508 times in a second, you will learn in our next lecture that they produce four beats in a second. When the forks are sounded the beats are heard, and the liquid vein is seen to gather up its pearls, and scatter them in synchronism with the beats. The sensitiveness of this vein is astounding; it rivals that of the ear itself. Placing the two tuning-forks on a distant table, and permitting the beats to die gradually out, the vein continues its rhythm almost as long as hearing is possible. A more sensitive vein might actually prove superior to the ear-a very surprising result, considering the marvellous delicacy of this organ.'

By introducing a Leyden-jar into the circuit of a powerful induction-coil, a series of dense and dazzling flashes of light, each of momentary duration, is obtained. Every such flash in a darkened room renders the drops distinct,

1 When these two tuning-forks were placed in contact with a vessel from which a liquid vein issued, the visible action on the vein continued long after the forks had ceased to be heard.

each drop being transformed into a little star of intense brilliancy. If the vein be then acted on by a sound of the proper pitch, it instantly gathers its drops together into a necklace of inimitable beauty.

In these experiments the whole vein gathers itself into a single arched band when the proper note is sounded; but, by varying the conditions, it may be caused to divide into two or more such bands, as shown in Fig. 145. Drawings, however, are ineffectual here; for the wonder of these experiments depends mainly on the sudden transition of the vein from one state to the other. In the motion dwells the surprise, and this no drawing can render.'

SUMMARY OF CHAPTER VI

WHEN a gas-flame is placed in a tube, the air in passing over the flame is thrown into vibration, musical sounds being the consequence.

Making allowance for the high temperature of the column of air associated with the flame, the pitch of the note is that of an open organ-pipe of the length of the tube surrounding the flame.

1 The experiments on sounding flames have been recently considerably extended by my assistant, Mr. Cottrell. By causing flame to rub against flame, various musical sounds can be obtained—some resembling those of a trumpet, others those of a lark. By the friction of unignited gas-jets, similar though less intense effects are produced. When the two flames of a fish-tail burner are permitted to impinge upon a plate of platinum, as in Scholl's "perfectors," the sounds are trumpet-like, and very loud. Two ignited gas-jets may be caused to flatten out like Savart's water-jets. Or they may be caused to roll themselves into two hollow horns, forming a most instructive example of the Wirbelflächen of Helmholtz. The carbon-particles liberated in the flame rise through the horns in continuous red-hot or white-hot spirals, which are extinguished at a height of some inches from their place of generation.

The vibrations of the flame, while the sound con. tinues, consist of a series of periodic extinctions, total or partial, between every two of which the flame partially recovers its brightness.

The periodicity of the phenomenon may be demonstrated by means of a concave mirror which forms an image of the vibrating flame upon a screen. When the image is sharply defined, the rotation of the mirror reduces the single image to a series of separate images of the flame. The dark spaces between the images correspond to the extinctions of the flame, while the images themselves correspond to its periods of recovery.

Besides the fundamental note of the associated tube, the flame can also be caused to excite the higher overtones of the tube. The successive divisions of the column of air are those of an open organ-pipe when its harmonic tones are sounded.

On sounding a note nearly in unison with a tube containing a silent flame, the flame jumps; and if the position of the flame in the tube be rightly chosen, the extraneous sound will cause the flame to sing.

While the flame is singing, a note nearly in unison with its own produces beats, and the flame is seen to jump in synchronism with the beats. The jumping is also observed when the position of the flame within its tube is not such as to enable it to sing.

NAKED FLAMES

When the pressure of the gas which feeds a naked flame is augmented, the flame, up to a certain point, increases in size. But if the pressure be too great, the flame roars or flares.

The roaring or flaring of the flame is caused by the state of vibration into which the gas is thrown in the orifice of the burner, when the pressure which urges it through the orifice is excessive.

If the vibrations in the orifice of the burner be superinduced by an extraneous sound, the flame will flare under a pressure less than that which, of itself, would produce flaring.

The gas under excessive pressure has vibrations of a definite period impressed upon it as it passes through the burner. To operate with a maximum effect upon the flame the external sound must contain vibrations synchronous with those of the issuing gas.

When such a sound is chosen, and when the flame is brought sufficiently near its flaring-point, it furnishes an acoustic reagent of unexampled delicacy.

At a distance of 30 yards, for example, the chirrup of a house-sparrow would be competent to throw the flame into commotion.

It is not to the flame, as such, that we are to ascribe these effects. Effects substantially similar are produced when we employ jets of unignited coal-gas, carbonic acid, hydrogen, or air. These jets may be rendered visible by smoke, and the smoke jets show a sensitiveness to sonorous vibrations even greater than that of the flames.

When a brilliant sensitive flame illuminates an otherwise dark room, in which a suitable bell is caused to strike, a series of periodic quenchings of the light by the sound occurs. Every stroke of the bell is accompanied by a momentary darkening of the room.

A jet of water descending from a circular orifice is composed of two distinct portions, the one pellucid and

« ПредыдущаяПродолжить »