Изображения страниц
PDF
EPUB

him; but, determined to escape, he made wings of feathers cemented with wax, and, instructing Icarus to fly neither too high nor too low, but to closely follow him, launched himself into the air, and took a bee-line for Greece. The young man, however, was ambitious, and, flying too near the sun, the wax melted, and he perished in the sea—a warning to future generations.

After Dædalus, we next hear of Archytas of Tarentum in Sicily, a famous geometrician who lived about 400 years B. C. He is credited with a dove made of wood, so contrived, we are told, "as by certain mechanical art and power to fly; so nicely was it balanced by weights and put in motion by hidden and inclosed air." One is surprised at the amount of talk and speculation that these few words have caused. If the dove were put in motion by inclosed air, then probably it was constructed on the principle of a balloon. If so, then of course the air must have been heated; or, better, since wood will crack and warp from heat, not unlikely a light gas was used; and since hydrogen is light, possibly hydrogen; and if so, how did Archytas prepare it? Others seriously try to throw ridicule on the whole affair, saying that a wooden dove could not possibly get support in such a way-that necessarily it would be too large and heavy, and that the material would not stand the strain, and so on.

For my own part, however, I think that old Lauretus Laurus had the true theory and explanation. He says that "the shells of hen's eggs, if properly filled, and well secured against the penetration of the air, and exposed to the solar rays, will ascend to the sky, and sometimes suffer a natural change; and if the eggs of the larger description of swans, or leather balls, stitched with fine thongs, be filled with niter, the purest sulphur, quicksilver, or kindred materials, which rarefy by their caloric energy; and if they externally resemble doves they will easily be mistaken for flying animals.

"If we should desire to give aërial motion to a wooden and ponderous machine, we must apply fire. Should there be any apprehension of the dove being burned, it can be covered over with some incombustible coating, and tubes of tin introduced, so that the fire may be kept alight in its bosom without injury to it. . . . To prevent the crackling of flames, and the emission of sparks, the powder may be deprived of force by the mixture of ochre and butter. An artificial throat may be formed to change the crackling of the flames into an imitation of the cooing of a dove. Tubes could have been easily" (and probably were) "constructed to ascend one after the other at convenient intervals, so that the bird would apparently be endued with life."

After Archytas, we hear little or nothing of flying-machines until the middle ages. Then the astrologers and alchemists and witches, in league with the evil-one on the one hand, and the friars and monks helped by good spirits on the other, did many wonderful things. The competition was strong. To simply fly was a mere bagatelle, a ready

means to the sinful or good end in view. The broomstick took a pre-eminent position as a flying-machine. What a pity it is that our ancestors should have so persistently fought against and finally succeeded in surpressing the broomstick! What could be more simple and effective? Perhaps by proper treatment the witches might have been persuaded to instruct the rest of the world in its use. In those days, dragons and magicians and good and evil spirits made out-ofdoors at night rather dangerous, and good people remained at home, with holy water on hand for an emergency. Here is an example from Remigius. Says he: "There is no doubt the following will be considered incredible by all and ridiculous by many; yet I can aver that two hundred persons testified to its truth. On regular and stated days these people assembled in a crowd on the banks of some lake or river, secluded from the observation of passers-by; and there they were in the habit of lashing the water with wands received from demons, until such time as vapors and mists were produced in large quantities, and with these they were wont to soar on high. The exhalations thus provoked condensed themselves into thick and darkling clouds, agitated and swept the heavens, assisted in their atmospheric war by the evil spirits whom they wrapped in their folds, and at length in a hail-storm smote the earth in their fury. Salome and Dominica Zabella, however, add that, before they thus agitated the water, they were in the practice of throwing into it an earthen pot, in which a little previous a demon had been inclosed, together with some stones of such size as they wished the hail to be. .. Decker Maygeth states that he and his confederates in crime used to receive candles from a demon of an azure color, and sail with them some distance from the margin of the lake, hold the light downward and let it drop freely into the water; that after that they scattered and spread some medicinal powder over the surface; that they then, with black rods, bestowed on them by demons, most vehemently lashed the waters, accompanying the action with a repetition of incantations to produce the desired results. Then the sky became overcast with clouds, and discharged torrents of rain and hail on those localities which they had pointed out." This incantation, Remigius says, "is not an invention of modern ages. It is not the invention of old hags whose mental powers were depraved by demons, or perverted by visions or dreams. It was practiced by men of keen intellects and acute investigation, who minutely observed, critically examined, and deliberately adopted their convictions."

...

[ocr errors]

Here is a description, according to Kircher, of a flying-machine invented by one of the fathers of the Church: Some of the fathers in India had been "cast into prison, and while they continued ignorant of any means of effecting their liberation, some one, more cunning than the rest, invented an extraordinary machine, and then threatened the barbarians, unless they liberated his companions, that they would behold in a short time some wonderful portents and experience the visible

anger of the gods. The barbarians laughed at the threat. He then constructed a dragon of the most volatile paper, and in this inclosed a mixture of sulphur, pitch, and wax, and so artistically arranged all his materials that when ignited it would illumine the machine and exhibit this legend' The wrath of God.' The body being formed and the ingredients prepared, he affixed a long tail, and committed the machine to the heavens. Favored by the wind, it soared aloft toward the clouds. The spectacle was terrific. The barbarians beholding it were smitten with the greatest astonishment and fear. . . . Thereupon without delay," says Kircher, "they threw open the gates and suffered the prisoners to go forth in peace."

In the middle ages, anybody at all distinguished by knowledge of science was credited with the art of flying, and indeed in many cases did not scruple to claim it. Albertus Magnus was one of these, but refused to give particulars to the world at large. He tells us, however, how to make thunder. Says he: "Take one pound of sulphur, two pounds of willow carbon, and six pounds of rock-salt, ground very fine in a marble mortar; place where you please in a covering made of flying-papyrus to produce thunder. The covering, in order to ascend and float away, should be long, graceful, and well filled with this powder; but to produce thunder the covering should be short and thick, and half full."

Roger Bacon, an eminent philosopher of the thirteenth century, also claimed to have knowledge of the art of flying, but believed also in the wisdom of silence concerning the details. But in his writings we find flashes of real light. He speaks of the possibility of constructing engines of great power to traverse land and sea; and seems to have been the first to have tolerably clear ideas of the principles involved in the construction of balloons. He describes a large hollow globe of copper or other suitable metal wrought extremely thin. It must then, he says, "be filled with ethereal air or liquid fire, and then be launched from some elevated point into the atmosphere, where it will float like a vessel on the water."

In his day the air was supposed to have a well-defined upper limit, like the water.

Friar Bacon too has been credited with the invention of gunpowder. He was of course accused of holding communion with the devil. Good Pope Nicholas placed his writings under a ban, and his wings were effectually clipped.

Shortly after his time, the project of training up children from infancy to fly received a good deal of attention, and, if we can trust the accounts, considerable progress was made, for it is said that, by combined running and flying, individuals could skim over the ground with great rapidity.

Regiomontanus, a famous mathematician, is said like Archytas to have formed an artificial dove, which flew out to meet the Emperor

Charles V at his public entry into Nuremberg. But, if this is true, the dove must have survived its inventor for at least twenty years. Then we are told of a monk who attempted a flight with wings from the top of a tower in Spain. He broke his legs, and was afterward burned as a sorcerer. Another similar trial was made from St. Mark's steeple in Venice; another in Nuremberg; and so on-legs or arms were usu

[graphic]

FIG. 1.-THE FLYING-MAN (Rétif de la Bretonne's idea). (From an old number of "Scribner's Magazine.")

ally broken, occasionally a neck. In the sixteenth century we read of a certain Italian who went to the court of James IV of Scotland, and attempted to fly from the walls of Stirling Castle to France. His thigh was broken; but, as a reason for the failure, he asserted that some of the feathers used in constructing his wings were from barnyard fowls, with a natural affinity for the dung-hill; whereas, if com

posed solely of eagle-feathers, they would have been attracted to the air. However, he does not appear to have carried the experiment further.

Many other trials have there been of the same character. The results were generally discouraging, but men can always be found ready to risk life and limb in striving to attain something much less important than the art of flying; without a knowledge of the principles involved, ignorant of the nature of the atmosphere, without machinery or power, fettered by a superstition that looked upon all learning outside of the Church as coming from the prince of darkness, it was a struggle in the dark-brave but hopeless.

Still, those old fellows were quite as reasonable in their attempts as many of our inventors are now. In looking through Patent-Office reports, we shall find devices only slightly different in detail from those tried five hundred years ago.

One of our illustrations shows the plan proposed by Rétif de la Bretonne away back in the dark ages; and another an apparatus patented in this country in 1872. It is only one of numbers of the same sort. Rétif had an advantage, in that he carried a lunch-basket and umbrella, and did not need so many ropes and spars; but otherwise the later arrangement seems equally good.

In 1783 the Montgolfiers invented the balloon. Friar Bacon, as we have seen, had speculated upon the possibility of such a construction. In 1670 Francis Lana, a Jesuit, had described an apparatus which, although impracticable in so far that it could not be built, nevertheless was correct in principle. The same idea had occurred to others; and there are even shadowy accounts of actual ascents. But to the Montgolfiers certainly belongs the honor of first actually building and bringing the balloon before the public as an accomplished fact. They used hot air only, but the substitution of hydrogen gas by Professor Charles speedily followed, and in a few years the balloon was made as perfect, excepting in a few details, as it is now.

It would be difficult to describe the excitement which followed this invention. The most extravagant hopes and anticipations were entertained. The problem had been solved. The birds and insects would no longer have a monopoly. Every gentleman would have a balloon hitched to his gate-post, or, wafted along by summer breezes, would look down in luxurious pity upon the poor plodders. Sails and rudders were to be used as on ships to direct the course. Regular lines of aërial passenger and mail coaches were to be established. There seemed no limit to the possible speed. Rome, or St. Petersburg, or even America, might be reached in a few hours, and for the comfort of travelers the arrangements proposed went far ahead of our palacecars. Floating hospitals were to be built; methods of warfare would need to be entirely reorganized; and England's boasted supremacy on the sea would be of no avail, unless she also maintained supremacy in the air.

« ПредыдущаяПродолжить »